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Essay {1

Oligopolistic extraction of a common-property
resource: Dynamic equilibria

JOHN McMILLAN and HANS-WERNER SINN*

1. Introduction

The speed with which firms choose to ‘extract a natural resource depends
crucially on the value the firms attach to the unextracted resource. Under
well-defined property rights, abstracting from imperfections in the final
market for the firms’ outputs, the firms will extract at the socially optimal
rate. When the resource is owned in common and entry into the industry
is free, the firms have no incentive to conserve the resource because they
know that newcomers to the industry will extract immediately any unit of
the resource that can be extracted with immediate profits. This case has
been thoroughly analysed in the literature.! When the resource is owned
in common but the number of firms is fixed (perhaps because each
extracting firm must have a lease to the property from which the resource
is extracted), the firms have some incentive to conserve the resource:
they know that immediate profitability does not necessarily result in
immediate extraction by rivals. It does not follow, however, that this
incentive to conserve the resource is strong enough to generate a socially
optimal extraction rate. Each unit of the resource which a firm chooses
not to extract today may in part be extracted by a rival film tomorrow;
thus, even without free entry, the firms’ valuation of the unextracted

*This research was intialed when McMillan was visiting the University of Mannheim. We
thank John Chilton, Peter Howitt, and Murray Kemp for comments. An earlier version of
this paper was circulated as Research Report No. 8204, University of Western Ontario,
February 1982,

'See, for example, Berck (1979). Dasgupta and Heal (1979, ch. 3}, Gorden (1954), Hoel
(1978), and Weitzinan (1974).
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200 I, McMillan and H.-W. Sinn

resource may be too low and the firms may extract the resource too
quickly. (The belief that common-property resources are extracted too
quickly has motivated much of the regulation of the petroleum industry:
see McDonald (1971, chs. 1-3) and Watkins (1977).)

This essay investigates dynamic equilibria for an oligopotistic industry
with a given number of firms exploiting a common-property non-renew-
able resource. It excludes the problem of market imperfections through
the assumption of a constant-elasticity demand curve? and thus concen-
trates on the distortions due to the common-pool aspect.

Several recent studies have examined the dynamics of the exploitation
of non-renewable common-property resources by an oligopolistic in-
dustry. Bolle (1980) considered the case of a common stock of a resource
to which several countries have access. Dasgupta and Heal (1979, ch.
12), Kemp and Long (1980), Khalatbari (1977), and Sinn {1983)
analysed the problem of oil-well owners who have the right to extract the
oil located under their own properties: the oil is in a single pool
underground, and seeps from one holding to another at a speed depen-
dent on the relative sizes of the stocks currently under cach property.

In modelling dynamic oligopely, some choice of equilibrium concept
must be made. A natural candidate is a dynamic analogue of the static
equilibrium concept introduced by Cournot: each firm makes its
decisions under the assumption that its rivals’ actions are not affected by
its own actions. Unfortunately, for dynamic common-property problems
the meaning of Cournot-type behaviour is ambiguous. One possible
Cournot-type assumption (adopted by Bolle (1980) and Kemp and Long
(1980)) is that each agent believes its rivals will follow a particular time
path of rates of extraction, regardless of its own actions, An aiternative
Cournot-type assumption (used by Sinn (1983)) is that each firm believes
that, regardless of its own actions, its rivals will extract in such a way as
to generate a particular time path of the stock of the resource. A third
possibility (Khalatbari {1977), Dasgupta and Heal (1979)) is that each
firm believes that its rivals both maintain a given time path of sales and
maintain a gtven time path of the stock of the resource. The qualitative
predictions of the models are sensitive to the choice of equilibrium
concept: the models of Dasgupta and Heal, Khalatbari, and Sinn predict
over-exploitation of the resource, while the Bolle and Kemp-Long
models predict Pareto-optimal extraction rates. Thus, the decision as to

Isoelastic demand ensures that there is no distortion due to oligopoly power when the
commodity is sold on the market; see Stiglitz (1976) and Weinstein and Zeckhauser (1975),

On the oligopolistic distortions with non-constant elasticity in a model with ne common-
properly aspect, see Lewis and Schmalensee (1980).
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whether or not there is a role for government intervention in common-
property markets is dependent upon which equilibriumm concept is
thought to be appropriate.

In section 2 we examine a more general concept of equilibrium for the
dynamic common-property problem by allowing firms to have arbitrary
conjectures about their rivals’ reactions. Then many equilibria are pos-
sible, including in particular the three Cournot-type equilibria.

Fellner (1949) criticized Cournot’s equilibrium concept because it
required firms’ actions to be “right for the wrong reasons™: at equili-
brium, the firms act consistently but under incorrect assumptions about
their rivals’ reactions. In a formally static model such as Cournot’s, this
concept of equilibrium is not unreasonable; if the game is only played
once, the incorrectness of conjectures may not be revealed. In an
explicitly dynamic model, Feliner’s criticism has more force. In a
dynamic context, it seems likely that, if conjectures are incorrect, this
incorrectness will be revealed, either during the initial adjustments on the
approach to equilibrium, or by occasional accidental or experimental
deviations after equilibrium has been reached. As an alternative to a
dynamic Cournot-type equilibrium, in section 3 we define a rational-
expectations equilibrium to be an equilibrium in which firms’ conjectures
are locally correct.

The model is developed for the case of a common pool of a resource,
to the whole of which each firm in the industry has access. The results
will be compared with results already reported in the literature. Since
many of these existing results refer to the different but related problem of
oil in a reservoir seeping from one individually owned property to
another, it is pecessary to show that the two problems are indeed
comparable; this is done in section 4. Section 5 offers concluding
comiments.

2. Conjectural equilibria

An industry consisting of s firms (n = 2) exploits a common pool of a
non-renewable resource. There is no entry into or exit from the industry.
Each firm knows the industry’s instantaneous demand function P(R),
P <0, where R(f) =Y!-; Ri(1} is the total amount extracted and sold at
time ¢ and R;(f) is the amount extracted and sold by firm i. Assume,
moreover, that the demand function is isoelastic, so that w=— P/(RP) >
( is constant. Each firm knows the size of the stock of the resource, S(i).
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As is standard in such models, extraction is assumed to be costless.* Firm
i chooses an extraction plan seeking to maximize the discounted vaiue of
its stream of future profits. Since the market price, and therefore firm i's
profit, at time t depends upon all the other firms’ extraction rates, without
some prediction of its rivals’ actions firm {’s optimization problem is not
well defined. Denote firm i's conjecture about the total extraction rate of
the other firms by R°_,{f). Assume firm {'s conjectures are of the form:

Re{1) = alt) + BS(1), (1}

where B is constant, 0= 8 <o, and a(f}+ BS(r)=0. The term «(J) in
firm i's conjectures indicates that firm i believes that, in part, its rivals’
extraction rate is autonomous. The term 85(1) reflects firm {’s belief that
a change in the size of the resource stock will cause a change in the
rivals’ extraction rate; 8 will be called the “‘conjectural parameter™.
Thus, firm i believes that the resource stock will change at the rate

S¢(1) = —R(1)
=—(R{D+R(1)
=—(Ri(0) + al1) + BS(N. (2)

Given S(0)= S>>0, firm i's objective is to choose, subject to (2), an
extraction plan R;(#) with R,(f) =0, to maximize

[ P(RE(D)Ri(t)e~"dr, 3) -

where r > 0 is the market rate of interest.
The Hamiltonian is:
%, = exp(—r)[P(R)R; — AR} (4)

Under the assumption of an interior solution, necessary conditions are,
from 8, JoR; = 0;

¢ _ Ri
= PRI(1- ). 5)
where
7> Ri/R". (6)

3The assumption of costless extraction is not essential. The analysis remains valid if there
is a constant average cost of extraction k and if v is redefined as n= — (P - k) P'R, where
1 is constant.
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Also. from alexp(—riyA)/at = — a9G/aS, and from (1):
hi—rhi =~ BIP(RYR, — AL (7
Let % denote x/x. Then, by the use of (3), (7) becomes:

,\”,:r+g[1+;§‘_/—}§,-——l] (8)

The transversality condition is:

lim exp(—ri}A (0 S(1) =0, 9

f—+o0

which requires, because of A; = r (from 8= 0, (6), and (8)):*

lim S$(1) = 0. (10)
Conditions (2), (5), (7), and (10) determine firm {'s extraction path, Ri{f}.
Each firm is assumed to make its decision about R;(f) in this way. In a
conjectural equilibrium, firm i's conjecture about the total of its rivals’
extraction paths, R<,(f), must be equal to the rivals’ actual total extrac-
tion path found as the solution to such maximization problems: R_;(1) =
¥;#iR(1). Thus, in equilibrium R<(f) = R_;(1) for all 1€ (0, «).
We consider only symmetric equilibria, so that in equilibrium R/R; =
n. Condition (6} therefore becomes:

> 1. (11)

Clearly, R/R; =n implies that (1 —1/(nR/R;)) is constant; hence in
equilibrium, (5) and (8) imply:

~Rfn = A, (12)
so that:
R=-p, (13)
where
_ 1
p=n[r+[3(1+nn_l)]. (14)

“This is the point at which it is necessary to assume @8 = 0 (that is, each firm believes that
part of every unit of the tesource it leaves unextracted will be extracted by its rivals). If 8
could be negative, (10) would not follow from (9).
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Since (2) and (10) imply that 3(1) = [ R{7) dr and since, because of (13),
{R(7)d7 = R(5)/p we find that:

§=-R/S=—p. (15)

This equation also implies that pfn = R/S for all i, i.e. that pln is the
single firm’s actual rate of extraction per unit of stock.
In an equilibrium, the transversality condition (9) becomes:

lim exp(—r) A (0) explep/ %) S(O) exp(—pt) = 0, (16)

when use is made of (12), (13), and (15). Inserting p from (14), and after
some manipulations, we can write this as:

nr+(n—l),8(l+ )>0. (17)

nn—1

Given, from {6), nn > 1, and given 8 =0, (17) is satisfied if and only if
either

n=1 (18a)

or
'Y]r
(1-m(1+

1
;<n<1 and B< (18b)

nnfl)

The crucial result of this mode! is contained in eq. (14); the right-hand
side of this will be called the extraction function. Rewrite (14) as:

p=a+bB, (19)

where

a=s=nr>0; bEn(1+ ! )>0.
nm-—1

Thus, in equilibrium, the unit rate of extraction chosen by all firms, p, is a
linear, increasing function of 3, the conjectural parameter. The faster the
firms expect their rivals to extract the resource, the faster they will
choose to extract the resource themselves. As will be shown, this self-
fulfilling-prophecy aspect can generate instability in common-property
markets,

How does the oligopolistic industry’s extraction rate compare with the
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socially optimal extraction rate? The Hoteiling rule states that, for
Pareto-optimal allocation in the absence of extraction costs and un-
certainty, the price of the resource should increase at the rate of interest;
that is P = r. With constant price elasticity of demand, this implies

S=-qr. (20

The conjectural parameter 8 determines whether or not the market
outcome is optimal. Suppose 8=0. Then, from (20) and (15), the
equilibrium rate of extraction is the socially optimal rate. The intuition is
that, with this particular value of 8, the optimizing firm behaves as if it
had well-defined property rights. Tt believes its rivals maintain a given
extraction path independently of its own actions. In effect there is a given
guantity of the resource available for it to extract; there is no need to
speed up its extraction process in order to prelude extraction by its rivals.
The results of Bolle and Kemp and Long correspond to this case.

Suppose A >>0; this means that the firm believes that, of every unit of
the resource it leaves unextracted, part will be extracted by its rivals.
Then, because b > 0, the extraction function (19) shows that p > nr, and
hence S < —vr. There is over-extraction (as predicted by Khalatbari and
Sinn for a special case in which B is a technologically-determined
positive constant). The larger is the conjectural parameter B, the greater
is the degree of over-extraction.

3. Rational-expectations equilibrium

In the previous section it was shown that, corresponding to the infinity of
possible conjectures about rivals’ reactions, there are infinitely many
dynamic equilibria. In this section it is asked whether adopting a stronger
equilibrium definition, requiring conjectures to be rational in a sense
about to be made precise, reduces the number of possible equilibria.

In a conjectural equilibrium, conjectures are correct at a point, in that
the actual rate at which any firm sees its rivals extracting the resource,
S(Hp(n—1)/n, is the same as the rate it conjectured for them, a(f)+
BS(1). A stronger notion of equilibrium requires that conjectures be
correct not only at the equiltibrium point but also for some range around
it. Suppose the size of the resource stock changes by some small amount
AS (perhaps because new information becomes available). Then, given
the conjectures B, a new conjectural equilibrium will be established
where each firm observes its rivals' rate of extraction to increase by
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ASp(n —1)/n. Hence p(n —1)/n is the actual marginal rate of extraction
on the part of i’s rivals. Now define a rational-expectations equilibrium to
be such that p(n—1)/n = B, or equivalently:

n

p:(nﬂl)ﬁl 2n

Thus, at a rational-expectations equilibrium the actual marginal rate of
extraction is equal to the conjectural marginal rate of extraction. Eq. (21)

1
fn-1

p=qr+ {1+

)8

et 4

P B B

TR

nn -t

Fig. 11.1 The extraction function and the process of revising the conjectural parameter.
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is represented in fig. 11. 1, which also shows the graph of the extraction
function (19). If a rational-expectations equilibrium exists, it must be
characterized by the point of intersection of the two lines. The location
and the existence of this intersection point depend upon the elasticity of
the market demand curve. Elementary manipulations show:

nZlebs (22)

n—1
where b= n[1 + 1/{nn—1)]is the slope of the extraction function as given
by (19).

Consider first the case 1= 1. Here, according to (22), the line depic-
ting the extraction function (19} is at least as steep as the line given by
(21). Since, from (19), the extraction function has a strictly positive
intercept, this implies that the two lines cannot intersect for finite values
of p and B in the range where p >0, that is, where the total extraction
per unit of stock is positive. The latter, however, is required by the
transversality condition (9) in connection with eq. (15).

Suppose, instead, that 1/rn< ¢ < 1. For this case, (22) clearly ensures
that there is a point of intersection with p > 0. But again this point does
not satisiy the transversality condition. To see this, note from (18b) that
in the case of n<1 the transversality condition requires f <
nr/{{[1-7]1+ 1/(nm—1)]}. Egs. (19) and (21), on the other hand, imply
that the point of intersection is characterized by:

_ nr
T nfn-D-n(1+ 1 nn—1)

Elementary algebra shows that (18b) and (23) are incompatible.

Thus, any outcome in which the conjectural marginal extraction rate
and the actual marginal extraction rate p(n—1)/n coincide does not
satisfy the transversality condition of the individual firm. No rational-
expectations equilibrium with finite extraction rates exists.

A rational-expectations equilibrium is a natural end-point for a dis-
equilibrium adjustment process in which firms adjust their conjec-
tures in the light of their observations of their rivals’ actual behaviour.
To demonstrate the implications of the non-existence of such an equili-
brium, consider the firm’s reactions to new information. If the system is
in an equilibrium, then in the absence of exogenous disturbances the
divergence between the actual marginal rate of extraction, p(n—1)/n,
and the conjectural parameter B is not revealed. Suppose, however,
there'is new (public) information which causes the estimate of the size of

B (23)
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the resource stock to be revised by some small amount. Now, given the
conjectures, a new equilibrium path will be established and each firm will
learn that® p(n—1)/n> B; ie. that its conjecture about the rivals’
marginal extraction rate was too conservative. This new information will
cause it in some way to revise upwards its conjectural parameter S.
According to the extraction function (19) a new equilibrium with a
higher rate of extraction p per unit of stock is achieved. From (19) and
(22):

b2l nEl. (24}

__[(n—l) ]_(ﬂ‘“l)
dg n P17 Ta
This means that any change in the conjectural marginal rate of extraction
translates into a larger, equal, or smaller change in the actual marginal
rate of extraction as the absolute elasticity of demand is larger than, equal
to, or smaller than unity, respectively. If 5 <1, then, with a sequence of
exogenous disturbances, both rates approach each other. However, as
shown above, before they coincide the conjectural equi-
librium ceases to exist. If 5= 1, new information always causes there to
be an equal or increased discrepancy between conjectured and actual
marginal extraction rates; new information results m ever faster extrac-
tion.

In fig. 11. 1 the arrows depict this process for the particular case in
which firms conjecture that their rivals' reactions to extra stock will be
the same as their actual reaction at the last observation {with n = 1).

The non-existence of a rational-expectations equilibrium with finite
extraction rates means that every possible equilibrium corresponding to
conjectures of the form (1) is unstable in the sense that it is based on
misapprehensions by firms about their rivals’ behaviour: new infor-
mation will cause firms to revise upwards their conjectures about their
rivals’ rates of extraction. This is true in particular of the equilibrium in
which extraction occurs at the socially optimal rate (the 8 =0 case).

4. Relationship to seepage models

The model developed above describes a common-property problem in
which each firm has access to the whole pool of the resource. Com-
parisons were made with the results of the problem of Kemp and Long

*From the discussion in the preceding paragraphs, it is clear that the firm will never
observe p(n —1)/n< 3,
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(1980), Khalatbari (1977), and Sinn (1983) in which the firms own
separate oil wells between which there is seepage. It remains to show that
the two problems are indeed comparable.

Suppose there are n symmetrically-placed oligopolists owning resource

stocks of sizes §,....,5,, from which they extract at the rates
R.,.... R, Let
= z Sj, R = Z Rf, S..,’ = Z Sj Rgi = z Rj.
j=t i=1 ji=1 i=1
J#EI ¥

Oil seeps between the ith well and the others® at a rate which is
proportional to the difference between the size of the ith stock §; and the
average size of all the other stocks, S_;/(n —1). Then the single firm’s
decision problem can be formulated as:

max Of P(R(0) Ri(f) exp(—re) dt (25)
subjectl to

S.f)=—Ri()+s (—ﬁ— St )) (26)

80 == R0+ 5500 - >19), @n

R0 = e+ (50— >40) — a5 (o). (28)

where 5;(0) = S_(0)/(n— 1) = So/n > 0, RE(8), Ri(1), S{1), S_() = 0. Egs.
(26) and (27) describe the seepage law, where s>0 is the seepage
parameter. Eq. (28) expresses firm i's conjectural hypothesis about the
extraction plans of its rivals: y reflects firm i’s conjecture that its rivals
will extract at a rate dependent on the size of their stocks; and o
represents firm i's conjecture that its rivals will extract immediately a
fraction §/s of the net inflow of oil from the ith firm’s holdings to its
rivals’ holdings. The model (25), (26), (27), and (28) reduces to the
Kemp-Long model if § = y =0, to the model of Sinn if § = s, and to that

It is nol necessary to consider separately the other (n — 1) stocks because the ith firm’s
decision does not depend upon the way the resource is distributed among its rivals; it is thus
sufficient to consider the aggregate variables §_;, R

—ir
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of Khalatbari’ if 8 = s and in addition n—=,

To relate this seepage model to the model studied in this essay, first
note that (26), (27), and (28) can be rewritten with § and §_; as state
variables, instead of §; and §_;, because §;=8-§_;:

Sy =—R(1), (29)
Sty =—R.{0)+ s[S(8) = S_i(Hnl(n— 1)], (30)
R_{6) = e() + 8S(e) + §_;()y— 8nf(n—1}). (31)

Consider now the Kemp-Long case y=8=0. This is the same as
problems (1), (2), and (3) with 8 = 0, except for the additional differential
equation (30). However, the co-state variable of $_,(f) is zero since,
given S(1), a change is S_,(1} could not change the present value of irm
i's profits. Hence, the marginal conditions for firm i's decision problem
are the same, namely (5) and (7). Only if S_;(1) > S(#) (which would imply
S(0<0) could S.,(1) affect firm i's decision problem: however, in a
symmetric equilibrium, S(r) = §;(¢), this possibility need not be con-
sidered. Thus, in equilibrium §_;{¢) is an irrelevant state variable in firm
i’s decision problem and hence the Kemp-Long model is a special case
of the model considered in sections 2 and 3.

For the model of Sinn {(and of Khalatbari when n— =), § = 5. From
(30) and (31), S_,(1) and hence $_,(1) are independent of S(1): the time
path of the stocks of the resource under the properties of i’s rivals is
exogenous to firm i’s decision problem. Hence, firm i conjectures its
rivals’ rates of extraction are RE,(1) = al(f)+ B85(s), where B =8 and
alt) = () + S_,(0){y — 8nf{n — 1)). For this case also, the seepage model
is a special case of the model of sections 2 and 3.

A third sitwation in which the seepage model and the common-pool
model coincide is when y = 8n/{n —1). Then (31) reduces to (1) and
again S_,(¢} is an endogenous but irrelevant state variable in firm /'s
decision problem. In this case, firm i conjectures that its rivals react only
to the size of the total resource stock and nat to its distribution over the
properties. Given this conjecture, firm i’s own decision depends only on
the total resource stock; the conjecture is self-confirming.

*Strictly speaking, this approach is not compatible with Khalatbari's model, since in that
model it is implicitly assumed that firm i conjectures that the whole seepage inflow from the
ith firm’s helding to its rivals’ holdings is immediately extracted by its rivals but not sold on
the market (see Kemp and Long (1980, pp. 131-132)). This assumption is innocuous only
in the limiting case of n— « (Sinn (1984)); henceforth we will interpret Khalatbari's result
as describing the case of perfect competition.
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1
nlr+sii+ )]

nir + s}

L 4

D E s

Figure 11.2  The relationship to seepage modeis.

Figure 11. 2 illustrates the possible equilibria for the seepage model.
Possible equilibria lie along the line representing the extraction function
(19}: line EAB for the case of a finite number of firms and line DAG for
the perfect-competition case. The outcomes described in the literature
are special cases of this model: point A represents the Kemp-Long
solution (6 = 8 = y = 0), point B the Sinn solution (& = 8 = s), and point
C the Khalatbari solution (§ = 8 = 5, n— o).

5. Concluding comments
When oligopolists exploiting a common-property resource have non-

trivial conjectures about their rivals’ actions, infinitely many equilibria are
possible, including in particular the Cournot-type equilibria previously
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analysed in the literature. Conjectures have a self-confirming property:
the faster a firm expects its rivals to extract the resource, the faster it
will itself extract. There exists no equilibrium with finite extraction
rates in which conjectures are locally correct. A consequence of this
is that new information about the size of the resource stock will always
cause the discrepancy between actual and conjectured reactions to
widen; new information will upset any equilibrium and cause the speed of
extraction 1o increase ®

The equilibrium concept of this essay was designed to be a direct
generalization of the various equilibrium concepis already used in the
literature on common-property resources (Bolle (1980), Dasgupta and
Heal (1979), Kemp and Long (1980), Khalatbari {1977), and Sinn
(1983)). The oligopoly problem described above is an example of a
differential game. It therefore should be pointed out that the equilibrium
concept used is not one of the concepts usually used in differential-game
models; rather, it bears a closer resemblance to the notion of conjectural-
variations equilibrium from static oligopoly theory. The closed-loop and
open-loop solutions of differential games (see Starr and Ho (1969) for
definitions} are both special cases of conjectural equilibria as defined in
section 2 above. The open-loop equilibrium involves strategies which do
not depend on the current size of the resource stock: it corresponds in this
essay to the case 8 =0, i.e. the socially optimal equilibrium. A closed-
loop equilibrium would occur in this model when the planned extraction
rate is the same as the actual extraction rate at all time points and for all
possible sizes of the stock. The rational-expectations equilibrium defined
in section 3 is a local approximation to a closed-loop equilibrium; since
no rational-expectations equilibrium exists, the analysis of section 3
constitutes a proof that there exists no closed-loop equilibrium in linear
strategies with finite extraction rates. Closed-loop equilibria in common-
property models have been examined by Reinganum and Stokey (1981)
and Eswaren and Lewis (1982). Reinganum and Stokey showed that, for
the continuous-time case with elastic demand, there exists a closed-loop
equilibrium, involving immediate extraction of the entire stock of the
resource. This is consistent with the results above. The proof of the
non-existence of a rational-expectations equilibrium in section 3 neces-
sarily assumes that 8, and therefore p, are finite, Immediate extraction
corresponds to infinite values of B and p. Clearly, this is consistent with

®This model, by assuming each firm sells the resource immediately it extracts it, ignores
the possibility that the firm might stockpile the resource after extraction. On the importance
of storage in exhaustible-resource models, see Hartwick (1981).
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eqs. (19) and (21) being satisfied simultaneously; immediate extraction is
thercfore a rational-expectations equilibrium provided the transversality
condition is satisfied. The analysis shows why elastic demand must be
assumed in order. to generate a closed-loop equilibrium: the trans-
versality condition (18) is not satisfied when there is inelastic demand and
infinite @. Furthermore, the adjustment dynamics sketched in section
3 provide some intuitive understanding of why the only closed-loop
equilibrium involves immediate extraction,’

The model suggests that there is a presumption that a common-
property resource will be inefficiently extracted and therefore that there
is scope for government intervention. However, with finite extraction
rates there are infinitely many equilibria — none a rational-expectations
equilibrium - most resulting in over-extraction, but one resulting in
socially optimal extraction, The size of the distortion is unpredictable;
thus no rectifying system of taxes can be calculated. In contrast to
economists’ usual prescriptions, quantitative controls seem in this case to
be supertor to taxes and subsidies. For example, prorationing (fixing a
maximum permissible rate of extraction by individual_ firms) or com-
pulsory or voluntary unitization {operating the whole pool under a single
decision-maker and then distributing the profits among the individual
firms: that is, collusion among the firms) in effect make $ zero and thus
ensure that extraction takes place at the socially optimal rate. These are,
in fact, methods used in regulating the petroleum industry: see Khoury
(1969), McDonald (1971), chs. 9, 10), and Watkins (1970, 1977).
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